Exogenous N addition enhances the responses of gross primary productivity to individual precipitation events in a temperate grassland

نویسندگان

  • Qun Guo
  • Zhong-min Hu
  • Sheng-gong Li
  • Gui-rui Yu
  • Xiao-min Sun
  • Ling-hao Li
  • Nai-shen Liang
  • Wen-ming Bai
چکیده

Predicted future shifts in the magnitude and frequency (larger but fewer) of precipitation events and enhanced nitrogen (N) deposition may interact to affect grassland productivity, but the effects of N enrichment on the productivity response to individual precipitation events remain unclear. In this study, we quantified the effects of N addition on the response patterns of gross primary productivity (GPP) to individual precipitation events of different sizes (Psize) in a temperate grassland in China. The results showed that N enrichment significantly increased the time-integrated amount of GPP in response to an individual precipitation event (GPPtotal), and the N-induced stimulation of GPP increased with increasing Psize. N enrichment rarely affected the duration of the GPP response, but it significantly stimulated the maximum absolute GPP response. Higher foliar N content might play an important role in the N-induced stimulation of GPP. GPPtotal in both the N-addition and control treatments increased linearly with Psize with similar Psize intercepts (approximately 5 mm, indicating a similar lower Psize threshold to stimulate the GPP response) but had a steeper slope under N addition. Our work indicates that the projected larger precipitation events will stimulate grassland productivity, and this stimulation might be amplified by increasing N deposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of rangeland gross primary productivity sensitivity potential to drought using ecosystem modelling

Gross primary productivity is one of the most important factors in the carbon cycle of terrestrial ecosystems. With global warming increase, the frequent drought events and the specific response of regional vegetation to these changes, it is essential to identify and quantify the relationships between climatic and GPP data in arid region. In this study, the responses of gross primary productivi...

متن کامل

Productivity depends more on the rate than the frequency of N addition in a temperate grassland

Nitrogen (N) is a key limiting resource for aboveground net primary productivity (ANPP) in diverse terrestrial ecosystems. The relative roles of the rate and frequency (additions yr(-1)) of N application in stimulating ANPP at both the community- and species-levels are largely unknown. By independently manipulating the rate and frequency of N input, with nine rates (from 0 to 50 g N m(-2) year(...

متن کامل

Contingent productivity responses to more extreme rainfall regimes across a grassland biome

Climate models predict, and empirical evidence confirms, that more extreme precipitation regimes are occurring in tandem with warmer atmospheric temperatures. These more extreme rainfall patterns are characterized by increased event size separated by longer within season drought periods and represent novel climatic conditions whose consequences for different ecosystem types are largely unknown....

متن کامل

Effects of precipitation and clipping intensity on net primary productivity and composition of a Leymus chinensis temperate grassland steppe

Leymus chinensis (Trin.) is the dominant vegetation type in eastern Eurasian temperate grasslands but is decreasing due to the combined pressure of reduced precipitation and overgrazing. This study evaluated the separate and combined effects of precipitation and defoliation on net primary productivity (NPP) and composition of a L. chinensis steppe to promote the sustainable development of tempe...

متن کامل

Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China

BACKGROUND Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. METHODOLOGY/PRINCIPAL FINDINGS In-situ canopy CO(2) exc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016